Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
Circulation
Article . 2005 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2006
versions View all 2 versions

Regulation of Bone Morphogenetic Protein-2 Expression in Endothelial Cells

Role of Nuclear Factor-κΒ Activation by Tumor Necrosis Factor-α, H 2 O 2 , and High Intravascular Pressure
Authors: Kira Smith; Gabor Kaley; Zoltan Ungvari; John G. Edwards; Akos Koller; Anna Csiszar;

Regulation of Bone Morphogenetic Protein-2 Expression in Endothelial Cells

Abstract

Background— Recent studies suggest that bone morphogenetic protein-2 (BMP-2), a transforming growth factor-β superfamily member cytokine, plays an important role both in vascular development and pathophysiological processes, including endothelial activation that is likely to contribute to the development of coronary atherosclerosis, yet the factors that regulate arterial expression of BMP-2 are completely unknown. We tested the hypothesis that BMP-2 expression in endothelial cells is governed by an H 2 O 2 and nuclear factor (NF)-κΒ–dependent pathway that can be activated by both proinflammatory and mechanical stimuli. Methods and Results— The proinflammatory cytokine tumor necrosis factor (TNF)-α induced NF-κΒ activation and elicited significant increases in BMP-2 mRNA and protein in primary coronary arterial endothelial cells and human umbilical vein endothelial cells that were prevented by NF-κΒ inhibitors (pyrrolidine dithiocarbamate and SN-50), silencing of p65 (siRNA), or catalase. Administration of H 2 O 2 also elicited NF-κΒ activation and BMP-2 induction. In organ culture, exposure of rat arteries to high pressure (160 mm Hg) elicited H 2 O 2 production, nuclear translocation of NF-κΒ, and upregulation of BMP-2 expression. Although high pressure upregulated TNF-α, it appears that it directly regulates BMP-2 expression, because upregulation of BMP-2 was also observed in vessels of TNF-α knockout mice. Conclusions— Vascular BMP-2 expression can be regulated by H 2 O 2 -mediated activation of NF-κΒ both by inflammatory stimuli and by high intravascular pressure.

Related Organizations
Keywords

Inflammation, Male, Mice, Knockout, Tumor Necrosis Factor-alpha, NF-kappa B, Bone Morphogenetic Protein 2, Blood Pressure, Hydrogen Peroxide, Rats, Mice, Gene Expression Regulation, Transforming Growth Factor beta, Bone Morphogenetic Proteins, Animals, Humans, Endothelium, Vascular, Rats, Wistar

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    208
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
208
Top 10%
Top 1%
Top 1%
bronze