Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Public Healtharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Public Health
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Public Health
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Public Health
Article
License: Springer TDM
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

A novel quantitative body shape score for detecting association between obesity and hypertension in China

Authors: Shukang Wang; Fuzhong Xue; Fangyu Li; Yanxun Liu; Hongying Jia; Longjian Liu;

A novel quantitative body shape score for detecting association between obesity and hypertension in China

Abstract

Obesity is a major independent risk factor for chronic diseases such as hypertension and coronary diseases, it might not be only related to the amount of body fat but its distribution. The single body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) or waist to stature ratio (WSR) provides limited information on fat distribution, and the debate about which one is the best remained. On the other hand, the current classification of body shape is qualitative rather than quantitative, and only crudely measure fat distribution. Therefore, a synthetical index is highly desirable to quantify body shape.Based on the China Health and Nutrition Survey (CHNS) data, using Lohmäller PLSPM algorithm, six Partial Least Squares Path Models (PLSPMs) between the different obesity measurements and hypertension as well as two synthetical body shape scores (BSS1 by BMI/WC/Hip circumference, BSS2 by BMI/WC/WHR/WSR) were created. Simulation and real data analysis were conducted to assess their performance.Statistical simulation showed the proposed model was stable and powerful. Totally 15,172 (6,939 male and 8,233 female) participants aged from 18 to 87 years old were included. It indicated that age, height, weight, WC, WHR, WSR, SBP, DBP, the prevalence of hypertension and obesity were significantly sex-different. BMI, WC, WHR, WSR, Hip, BSS1 and BSS2 between hypertension and normotensive group are significantly different (p < 0.05). PLSPM method illustrated the biggest path coefficients (95% confidence interval, CI) were 0.220(0.196, 0.244) for male and 0.205(0.182, 0.228) for female in model of BSS1. The area under receiver-operating characteristic curve (AUC(95% CI)) of BSS1(0.839(0.831,0.847)) was significantly larger than that of BSS2(0.834(0.825,0.842)) as well as the four single indices for female, and similar trend can be found for male.BSS1 was an excellent measurement for quantifying body shape and detecting the association between body shape and hypertension.

Related Organizations
Keywords

Adult, Male, China, Blood Pressure, Body Mass Index, Young Adult, Risk Factors, Prevalence, Humans, Obesity, Aged, Waist-Hip Ratio, Body Weight, Public Health, Environmental and Occupational Health, Middle Aged, Body Height, Adipose Tissue, ROC Curve, Hypertension, Female, Waist Circumference, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green
gold