Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Plant disease susceptibility conferred by a “resistance” gene

Authors: Jennifer M, Lorang; Teresa A, Sweat; Thomas J, Wolpert;

Plant disease susceptibility conferred by a “resistance” gene

Abstract

The molecular nature of many plant disease resistance (R) genes is known; the largest class encodes nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins that are structurally related to proteins involved in innate immunity in animals. Few genes conferring disease susceptibility, on the other hand, have been identified. Recent identification of susceptibility to the fungusCochliobolus victoriaeinArabidopsis thalianahas enabled our cloning ofLOV1, a disease susceptibility gene that, paradoxically, is a member of the NBS-LRR resistance gene family. We foundLOV1mediates responses associated with defense, but mutations in known defense response pathways do not prevent susceptibility toC. victoriae. These findings demonstrate that NBS-LRR genes can condition disease susceptibility and resistance and may have implications forRgene deployment.

Related Organizations
Keywords

Genomic Library, Polymorphism, Genetic, Base Sequence, Nucleotides, Molecular Sequence Data, Arabidopsis, Proteins, Mycotoxins, Genes, Plant, Leucine-Rich Repeat Proteins, Physical Chromosome Mapping, Chromosomes, Plant, Immunity, Innate, Fungal Proteins, Ascomycota, Mutation, Genetic Predisposition to Disease, Amino Acid Sequence, Cloning, Molecular, Plant Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    250
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
250
Top 1%
Top 1%
Top 1%
bronze