Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Health...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Health and Preventive Medicine
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A rare Asian founder polymorphism of Raptor may explain the high prevalence of Moyamoya disease among East Asians and its low prevalence among Caucasians

Authors: Wanyang Liu; Norio Matsuura; Jeongeun Kim; Boris Krischek; Yasushi Takagi; Kayoko Inoue; David-Alexandre Trégouët; +12 Authors

A rare Asian founder polymorphism of Raptor may explain the high prevalence of Moyamoya disease among East Asians and its low prevalence among Caucasians

Abstract

In an earlier study, we identified a locus for Moyamoya disease (MMD) on 17q25.3.Linkage analysis and fine mapping were conducted for two new families in additional to the previously studied 15 families. Three genes, CARD14, Raptor, and AATK, were selected based on key words, namely, "inflammation", "apoptosis", "proliferation", and "vascular system", for further sequencing. A segregation analysis of 34 pedigrees was performed, followed by a case-control study in Japanese (90 cases vs. 384 controls), Korean (41 cases vs. 223 controls), Chinese (23 cases and 100 controls), and Caucasian (25 cases and 164 controls) populations.Linkage analysis increased the LOD score from 8.07 to 9.67 on 17q25.3. Fine mapping narrowed the linkage signal to a 2.1-Mb region. Sequencing revealed that only one newly identified polymorphism, ss161110142, which was located at position -1480 from the transcription site of the Raptor gene, was common to all four unrelated sequenced familial affected individuals. ss161110142 was then shown to segregate in the 34 pedigrees studied, resulting in a two-point LOD score of 14.2 (P = 3.89 × 10(-8)). Its penetrance was estimated to be 74.0%. Among the Asian populations tested (Japanese, Korean, and Chinese), the rare allele was much more frequent in cases (26, 33, and 4%, respectively) than in controls (1, 1, and 0%, respectively) and was associated with an increased odds ratio of 52.2 (95% confidence interval 27.2-100.2) (P = 2.5 × 10(-49)). This allele was, however, not detected in the Caucasian samples. Its population attributable risk was estimated to be 49% in the Japanese population, 66% in the Korean population, and 9% in the Chinese population.ss161110142 may confer susceptibility to MMD among East Asian populations.The online version of this article (doi:10.1007/s12199-009-0116-7) contains supplementary material, which is available to authorized users.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
gold