Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Neuroscience
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe

Authors: Q, Gao; B, Yuan; A, Chess;

Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe

Abstract

Candidate Drosophila olfactory receptors (ORs) provide molecular tools to investigate how the organization of the Drosophila olfactory system determines the coding of olfactory stimuli. Neurons in the third antennal segment and maxillary palp appear to express different ORs. Individual olfactory neurons send axonal projections to glomeruli in the antennal lobe. Using transgenic flies, we provide evidence that the neurons expressing a given OR gene, which have cell bodies distributed among neurons expressing other ORs, converge in their projections to topographically fixed glomeruli in the antennal lobe. This convergence allows for the formation of an odotopic map in the antennal lobe whose organization could provide a basis for olfactory discrimination in Drosophila.

Keywords

Animals, Genetically Modified, Drosophila melanogaster, Animals, HSP70 Heat-Shock Proteins, Promoter Regions, Genetic, Receptors, Odorant, beta-Galactosidase, Polymerase Chain Reaction, Olfactory Receptor Neurons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    379
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
379
Top 1%
Top 1%
Top 1%