Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Molecular Cloning and Expression of a Novel Humantrans-Golgi Network Glycoprotein, TGN51, That Contains Multiple Tyrosine-containing Motifs

Authors: R, Kain; K, Angata; D, Kerjaschki; M, Fukuda;

Molecular Cloning and Expression of a Novel Humantrans-Golgi Network Glycoprotein, TGN51, That Contains Multiple Tyrosine-containing Motifs

Abstract

Previously, it has been shown that glycoproteins with approximately 130-kDa molecular mass react with antisera from patients with renal vasculitis (Kain, R., Matsui, K., Exner, M., Binder, S., Schaffner, G., Sommer, E. M., and Kerjaschki, D. (1995) J. Exp. Med. 181, 585-597). To search for a molecule that reacts with the antibodies, we screened a lambdagt11 human placental cDNA library. Two of the isolated clones were found to encode a putative counterpart of the rodent trans-Golgi network (TGN) glycoprotein 38, hTGN46, which has the tyrosine containing motif YQRL shared by mouse and rat TGN38. Moreover, reverse transcription-polymerase chain reaction analysis of hTGN46 transcripts and genomic analysis of a cDNA deposited as an expressed sequence tag in dbEST Data Base revealed that additional cDNAs exist that are produced by alternate usage of 3'-splice sites of intron III. Alternative splicing results in frame shifts and leads to novel larger translation products with one (for hTGN48) or two (for hTGN51) additional tyrosine-containing motifs. hTGN51 expressed in Chinese hamster ovary cells were localized to the trans-Golgi network, overlapping with beta-1,4-galactosyltransferase even after mutating the tyrosine-containing motif common to hTGN46. In contrast, mutated hTGN48 and hTGN46 are no longer retrieved to the TGN. These results strongly suggest that hTGN51 may have a unique function compared with hTGN46 or hTGN48 in shuttling between the cell surface and the TGN.

Keywords

DNA, Complementary, Membrane Glycoproteins, Base Sequence, RNA Splicing, Molecular Sequence Data, Chromosome Mapping, Golgi Apparatus, Membrane Proteins, CHO Cells, Protein Sorting Signals, Introns, Chromosomes, Human, Pair 2, Cricetinae, Animals, Humans, Tyrosine, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
gold