Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1986 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Molecular and Cellular Biology
Article . 1986 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Alternative RNA splicing generates transcripts encoding a thorax-specific isoform of Drosophila melanogaster myosin heavy chain.

Authors: S I, Bernstein; C J, Hansen; K D, Becker; D R, Wassenberg; E S, Roche; J J, Donady; C P, Emerson;

Alternative RNA splicing generates transcripts encoding a thorax-specific isoform of Drosophila melanogaster myosin heavy chain.

Abstract

Genomic and cDNA sequencing studies show that transcripts from the muscle myosin heavy-chain (MHC) gene of Drosophila melanogaster are alternatively spliced, producing RNAs that encode at least two MHC isoforms with different C termini. Transcripts encoding an MHC isoform with 27 unique C-terminal amino acids accumulate during both larval and adult muscle differentiation. Transcripts for the second isoform encode one unique C-terminal amino acid and accumulate almost exclusively in pupal and adult thoracic segments, the location of the indirect flight muscles. The 3' splice acceptor site preceding the thorax-specific exon is unusually purine rich and thus may serve as a thorax-specific splicing signal. We suggest that the alternative C termini of these two MHC isoforms control myofilament assembly and may play a role in generating the distinctive myofilament organizations of flight muscle and other muscle types.

Related Organizations
Keywords

Base Sequence, Transcription, Genetic, RNA Splicing, Single-Strand Specific DNA and RNA Endonucleases, DNA, Myosins, Endonucleases, Isoenzymes, Drosophila melanogaster, Gene Expression Regulation, Animals, RNA, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 1%
Top 1%
bronze