Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Autoregulation of glypican-1 by intronic microRNA-149 fine-tunes the angiogenic response to fibroblast growth factor in human endothelial cells

Authors: Elisa Araldi; Elisa Araldi; Aranzazu Chamorro-Jorganes; Daniel Cirera-Salinas; Yajaira Suárez; Yajaira Suárez; Noemi Rotllan; +1 Authors

Autoregulation of glypican-1 by intronic microRNA-149 fine-tunes the angiogenic response to fibroblast growth factor in human endothelial cells

Abstract

MiR-149 is located within the first intron of glypican-1 (GPC1) gene. GPC1 is low affinity receptor for fibroblast growth factor (FGF2) that favors FGF2- binding to its receptor (FGFR1), subsequently promoting FGF2-FGFR1 activation and signaling. Using bioinformatic approaches, both GPC1 and FGFR1 were identified and subsequently validated as targets for miR-149 (both mature and passenger strands) in endothelial cells (ECs). ?As a consequence of their targeting activity towards GPC1 and FGFR1, both miR-149 and miR-149* regulated FGF2 signaling and FGF2-induced responses in ECs, namely proliferation, migration and cord formation. Moreover, lentiviral overexpression of miR-149 reduced in vivo tumor-induced neovascularization. Importantly, FGF2 transcriptionally stimulated the expression of miR-149 independently of its host gene, therefore assuring the steady state of FGF2-induced responses through the regulation of the GPC1-FGFR1 binary complex in ECs.

Keywords

Male, 570, FGF2, Gene Expression, Neovascularization, Physiologic, Carcinoma, Lewis Lung, Mice, Endothelial cell, Glypicans, Human Umbilical Vein Endothelial Cells, Animals, Humans, Receptor, Fibroblast Growth Factor, Type 1, Cells, Cultured, microRNA, Neovascularization, Pathologic, MiR-149*Angiogenesis, 500, MicroRNAs, Fibroblast Growth Factor 2, RNA Interference, Glypican-1, Neoplasm Transplantation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze