Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2004 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 2004
Data sources: MPG.PuRe
The EMBO Journal
Article . 2004
versions View all 3 versions

Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport

Authors: Peng, R.; Gallwitz, D.;

Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport

Abstract

Sec1/Munc18 (SM) proteins are central to intracellular transport and neurotransmitter release but their exact role is still elusive. Several SM proteins, like the neuronal N-Sec1 and the yeast Sly1 protein, bind their cognate t-SNAREs with high affinity. This has been thought to be critical for their function. Here, we show that various mutant forms of Sly1p and the Golgi-localized syntaxin Sed5p, which abolish their high-affinity interaction, are fully functional in vivo, indicating that the tight interaction of the two molecules per se is not relevant for proper function. Mutant Sly1p unable to bind Sed5p is excluded from core SNARE complexes, also demonstrating that Sly1p function is not directly coupled to assembled SNARE complexes thought to execute membrane fusion. We also find that wild-type Sly1p and mutant Sly1p unable to bind Sed5p directly interact with selected ER-to-Golgi and intra-Golgi nonsyntaxin SNAREs. The newly identified, direct interactions of the SM protein with nonsytaxin SNAREs might provide a molecular mechanism by which SNAREs can be activated to engage in pairing and assemble into fusogenic SNARE complexes.

Keywords

Qa-SNARE Proteins, Molecular Sequence Data, Cathepsin A, Golgi Apparatus, Membrane Proteins, Biological Transport, Saccharomyces cerevisiae, Models, Biological, Precipitin Tests, Fungal Proteins, Munc18 Proteins, Amino Acid Substitution, Microscopy, Fluorescence, Amino Acid Sequence, Carrier Proteins, SNARE Proteins, Hydrophobic and Hydrophilic Interactions, Conserved Sequence, Glutathione Transferase, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%
Green
gold