Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2002 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
PLANT PHYSIOLOGY
Article . 2002
versions View all 2 versions

Identification of Arabidopsis Ethylene-Responsive Element Binding Factors with Distinct Induction Kinetics after Pathogen Infection,

Authors: Luis, Oñate-Sánchez; Karam B, Singh;

Identification of Arabidopsis Ethylene-Responsive Element Binding Factors with Distinct Induction Kinetics after Pathogen Infection,

Abstract

Abstract Ethylene-responsive element binding factors (ERF) proteins are plant-specific transcription factors, many of which have been linked to stress responses. We have identified four Arabidopsis ERF genes whose expression was specifically induced by avirulent and virulent strains of the bacterial pathogen Pseudomonas syringae pv tomato, with overlapping but distinct induction kinetics. However, a delay in ERFmRNA accumulation after infection with the virulent strain was observed when compared with the avirulent strain. The induction ofERF gene expression in most cases preceded the mRNA accumulation of a basic chitinase gene, a potential downstream target for one or more of these ERFs. The expression of the ERFgenes was examined among different Arabidopsis tissues, in response to the signaling molecules ethylene, methyl jasmonate, and salicylic acid (SA), and in Arabidopsis mutants with decreased or enhanced susceptibility to pathogens, and significant differences were observed. For example, in seedlings, some of the ERF genes were not induced by SA in the wild-type but were SA responsive in thepad4-1 mutant, suggesting that PAD4-1, which acts upstream of SA accumulation, is also involved in repressing the SA-induced expression of specific ERF genes. The four ERF proteins were shown to contain transcriptional activation domains. These results suggest that transcriptional activation cascades involving ERF proteins may be important for plant defense to pathogen attack and that some ERF family members could be involved in the cross-talk between SA- and jasmonic acid-signaling pathways.

Keywords

Arabidopsis Proteins, Arabidopsis, Nuclear Proteins, Cyclopentanes, Acetates, Ethylenes, DNA-Binding Proteins, Kinetics, Plant Growth Regulators, Gene Expression Regulation, Plant, Pseudomonas, Mutation, Oxylipins, RNA, Messenger, Stress, Mechanical, Salicylic Acid, Phylogeny, Plant Diseases, Plant Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    202
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
202
Top 1%
Top 1%
Top 10%
hybrid