Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Plant Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 1998 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Combinatorial interaction of light‐responsive elements plays a critical role in determining the response characteristics of light‐regulated promoters in Arabidopsis

Authors: S, Chattopadhyay; P, Puente; X W, Deng; N, Wei;

Combinatorial interaction of light‐responsive elements plays a critical role in determining the response characteristics of light‐regulated promoters in Arabidopsis

Abstract

We have studied the roles of PhyA, PhyB and CRY1 photoreceptors and the downstream light-signaling components, COP1 and DET1, in mediating high-irradiance light-controlled activity of promoters containing synthetic light-responsive elements (LRE). Promoters with paired LREs were able to respond to a wide spectrum of light through multiple photoreceptors, while the light-inducible single LRE promoters primarily responded to a specific wavelength of light. In addition, our results indicate that Cry1 is involved in PhyB-mediated red-light induction of the G-GATA/NOS101 promoter, and that both Cry1 and PhyB are required for effective repression of the GT1/NOS101 promoter by red or blue light. An interaction between PhyA and PhyB in mediating GT1-GATA/NOS101 promoter light activation was also observed. Furthermore, our data indicate that COP1 and DET1 exert negative control in the dark only on paired LRE promoters but not single LRE promoters. From these results, we conclude that the combinatorial interaction of LREs is essential in determining the ability of light-responsive promoters to be modulated by crucial cellular regulators and to respond to diverse light environments.

Related Organizations
Keywords

Flavoproteins, Light, Arabidopsis Proteins, Recombinant Fusion Proteins, Arabidopsis, Intracellular Signaling Peptides and Proteins, Nuclear Proteins, Receptors, G-Protein-Coupled, Cryptochromes, Gene Expression Regulation, Plant, Phytochrome B, Phytochrome A, Drosophila Proteins, Photoreceptor Cells, Photoreceptor Cells, Invertebrate, Phytochrome, Carrier Proteins, Eye Proteins, Promoter Regions, Genetic, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%