Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

CCM2 Mediates Death Signaling by the TrkA Receptor Tyrosine Kinase

Authors: Barbara Costa; Benedikt Brors; Matthias Fischer; Smadar Avigad; David L. Kaplan; Loen M. Hansford; Marc Zapatka; +12 Authors

CCM2 Mediates Death Signaling by the TrkA Receptor Tyrosine Kinase

Abstract

The TrkA receptor tyrosine kinase is crucial for differentiation and survival of nerve-growth-factor-dependent neurons. Paradoxically, TrkA also induces cell death in pediatric tumor cells of neural origin, via an unknown mechanism. Here, we show that CCM2, a gene product associated with cerebral cavernous malformations, interacts with the juxtamembrane region of TrkA via its phosphotyrosine binding (PTB) domain and mediates TrkA-induced death in diverse cell types. Both the PTB and Karet domains of CCM2 are required for TrkA-dependent cell death, such that the PTB domain determines the specificity of the interaction, and the Karet domain links to death pathways. Downregulation of CCM2 in medulloblastoma or neuroblastoma cells attenuates TrkA-dependent death. Combined high expression levels of CCM2 and TrkA are correlated with long-term survival in a large cohort of human neuroblastoma patients. Thus, CCM2 is a key mediator of TrkA-dependent cell death in pediatric neuroblastic tumors.

Keywords

Cell Death, Neuroscience(all), Microfilament Proteins, Apoptosis, Prognosis, PC12 Cells, Receptor, Nerve Growth Factor, MOLNEURO, Cell Line, Rats, Mice, Neuroblastoma, SIGNALING, Mutation, Animals, Humans, Receptor, trkB, CELLBIO, Receptor, trkA, Carrier Proteins, Cells, Cultured, Medulloblastoma

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
hybrid