Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway

Authors: Seung Kwan, Yoo; Jong Seob, Lee; Ji Hoon, Ahn;

Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway

Abstract

MADS box genes are known to perform important functions in the development of various plant organs. Although the functions of many MADS box genes have previously been elucidated, the biological function of the type I MADS box genes remains poorly understood. In order to understand the function and regulation of the type I MADS box genes, we conducted molecular genetic analyses of AGL28, a member of the Malpha class of type I genes. AGL28 was expressed in vegetative tissues in a photoperiod-independent manner, but not within the reproductive apex. This indicates that AGL28 plays a role in the vegetative phase. Overexpression of AGL28 caused precocious flowering via the upregulation of the expression of FCA and LUMINIDEPENDENS (LD), both floral promoters within the autonomous pathway. However, the loss of AGL28 function did not result in any obvious flowering time phenotype, which suggests that AGL28 may perform a redundant function. Collectively, our data suggest that AGL28 is a positive regulator of known floral promoters within the autonomous pathway in Arabidopsis.

Related Organizations
Keywords

Base Sequence, Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, MADS Domain Proteins, Flowers, Plants, Genetically Modified, Up-Regulation, Amino Acid Sequence, Promoter Regions, Genetic, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Average