PAH Particles Perturb Prenatal Processes and Phenotypes: Protection from Deficits in Object Discrimination Afforded by Dampening of Brain Oxidoreductase Following In Utero Exposure to Inhaled Benzo(a)pyrene
PAH Particles Perturb Prenatal Processes and Phenotypes: Protection from Deficits in Object Discrimination Afforded by Dampening of Brain Oxidoreductase Following In Utero Exposure to Inhaled Benzo(a)pyrene
The wild-type (WT) Cpr(lox/lox) (cytochrome P(450) oxidoreductase, Cpr) mouse is an ideal model to assess the contribution of P(450) enzymes to the metabolic activation and disposition of environmental xenobiotics. In the present study, we examined the effect of in utero exposure to benzo(a)pyrene [B(a)P] aerosol on Sp4 and N-methyl-D-aspartate (NMDA)-dependent systems as well as a resulting behavioral phenotype (object discrimination) in Cpr offspring. Results from in utero exposure of WT Cpr(lox/lox) mice were compared with in utero exposed brain-Cpr-null offspring mice. Null mice were used as they do not express brain cytochrome P(450)1B1-associated NADPH oxidoreductase (CYP1B1-associated NADPH oxidoreductase), thus reducing their capacity to produce neural B(a)P metabolites. Subsequent to in utero (E14-E17) exposure to B(a)P (100 μg/m(3)), Cpr(lox/lox) offspring exhibited: (1) elevated B(a)P metabolite and F(2)-isoprostane neocortical tissue burdens, (2) elevated concentrations of cortical glutamate, (3) premature developmental expression of Sp4, (4) decreased subunit ratios of NR2B:NR2A, and (5) deficits in a novelty discrimination phenotype monitored to in utero exposed brain-Cpr-null offspring. Collectively, these findings suggest that in situ generation of metabolites by CYP1B1-associated NADPH oxidoreductase promotes negative effects on NMDA-mediated signaling processes during the period when synapses are first forming as well as effects on a subsequent behavioral phenotype.
- Meharry Medical College United States
- Texas A&M University United States
- Texas A&M Health Science Center United States
- The University of Texas System United States
- Vanderbilt University United States
Aerosols, Mice, Knockout, Neurons, Inhalation Exposure, Behavior, Animal, Brain, Glutamic Acid, Receptors, N-Methyl-D-Aspartate, Discrimination Learning, Mice, Inbred C57BL, Mice, Phenotype, Pregnancy, Prenatal Exposure Delayed Effects, Benzo(a)pyrene, Animals, Female, Particle Size, Oxidation-Reduction, NADPH-Ferrihemoprotein Reductase
Aerosols, Mice, Knockout, Neurons, Inhalation Exposure, Behavior, Animal, Brain, Glutamic Acid, Receptors, N-Methyl-D-Aspartate, Discrimination Learning, Mice, Inbred C57BL, Mice, Phenotype, Pregnancy, Prenatal Exposure Delayed Effects, Benzo(a)pyrene, Animals, Female, Particle Size, Oxidation-Reduction, NADPH-Ferrihemoprotein Reductase
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
