Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1991 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cell.

Authors: M, Werner-Washburne; D, Brown; E, Braun;

Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cell.

Abstract

The regulatory subunit of cAMP-dependent protein kinase in yeast, encoded by the BCY1 gene, is known to be required under certain conditions such as growth on nonfermentable carbon sources and entry into stationary phase. We have identified novel isoforms of Bcy1 in cells under these conditions. The isoforms are distinguishable by their migration on one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional nonequilibrium pH gradient gel electrophoresis. The isoforms observed by one-dimensional SDS-PAGE bind cAMP, as determined by [32P]8-azido-cAMP labeling (diagnostic of Bcy1 protein). Proteins isolated from cells grown to stationary phase in rich medium exhibit five antibody-reactive bands, by one-dimensional SDS-PAGE immunoblot analysis, with apparent molecular masses of 50, 52, 55, 59 and 61 kDa. Total Bcy1 protein increases at least 8-fold between exponential and stationary phase. Analysis of proteins from a variety of yeast mutants indicated that 1) many of the observed modifications of Bcy1 are dependent upon the presence of the Ser-145 phosphorylation site; 2) the appearance of the 59- and 61-kDa bands is dependent upon the presence of Yak1 kinase; and 3) Bcy1 protein is modified even in the absence of cAMP-dependent protein kinase catalytic subunits. Cells carrying the bcy1(ala145) allele exhibit non-wild type growth, indicating that these modifications may be functionally significant.

Related Organizations
Keywords

Cyclic AMP Receptor Protein, Blotting, Western, Saccharomyces cerevisiae, Mutation, Cyclic AMP, Electrophoresis, Gel, Two-Dimensional, Electrophoresis, Polyacrylamide Gel, Phosphorylation, Carrier Proteins, Protein Kinases, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Average
Top 10%
Average
gold