Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process
Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process
Post-Golgi secretory vesicle trafficking is a coordinated process, with transport and regulatory mechanisms to ensure appropriate exocytosis. While the contributions of many individual regulatory proteins to this process are well studied, the timing and dependencies of events have not been defined. Here we track individual secretory vesicles and associated proteins in vivo during tethering and fusion in budding yeast. Secretory vesicles tether to the plasma membrane very reproducibly for ∼18 s, which is extended in cells defective for membrane fusion and significantly lengthened and more variable when GTP hydrolysis of the exocytic Rab is delayed. Further, the myosin-V Myo2p regulates the tethering time in a mechanism unrelated to its interaction with exocyst component Sec15p. Two-color imaging of tethered vesicles with Myo2p, the GEF Sec2p, and several exocyst components allowed us to document a timeline for yeast exocytosis in which Myo2p leaves 4 s before fusion, whereas Sec2p and all the components of the exocyst disperse coincident with fusion.
- Cornell University United States
- Department of Biological Sciences Russian Federation
- Institute of Molecular and Cell Biology Russian Federation
Saccharomyces cerevisiae Proteins, Secretory Pathway, Microscopy, Fluorescence, Myosin Heavy Chains, rab GTP-Binding Proteins, Secretory Vesicles, Myosin Type V, Saccharomyces cerevisiae, Membrane Fusion, Research Articles
Saccharomyces cerevisiae Proteins, Secretory Pathway, Microscopy, Fluorescence, Myosin Heavy Chains, rab GTP-Binding Proteins, Secretory Vesicles, Myosin Type V, Saccharomyces cerevisiae, Membrane Fusion, Research Articles
10 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
