Pembrolizumab Induces an Unexpected Conformational Change in the CC′-loop of PD-1
Pembrolizumab Induces an Unexpected Conformational Change in the CC′-loop of PD-1
To improve cancer immunotherapy, a clearer understanding of key targets such as the immune checkpoint receptor PD-1 is essential. The PD-1 inhibitors nivolumab and pembrolizumab were recently approved by the FDA. The CC′-loop of PD-1 has been identified as a hotspot for drug targeting. Here, we investigate the influence of nivolumab and pembrolizumab on the molecular motion of the CC′-loop of PD-1. We performed molecular dynamics simulations on the complete extracellular domain of PD-1, in complex with PD-L1, and the blocking antibodies nivolumab and pembrolizumab. Conformations of the CC′-loop were analyzed unsupervised with the Daura et al. clustering algorithm and multidimensional scaling. Surprisingly, two conformations found were seen to correspond to the ‘open’ and ‘closed’ conformation of CC′-loop in apo-PD-1, already known from literature. Unsupervised clustering also surprisingly reproduced the natural ligand, PD-L1, exclusively stabilizing the ‘closed’ conformation, as also known from literature. Nivolumab, like PD-L1, was found to shift the equilibrium towards the ‘closed’ conformation, in accordance with the conformational selection model. Pembrolizumab, on the other hand, induced a third conformation of the CC′-loop which has not been described to date: Relative to the conformation ‘open’ the, CC′-loop turned 180° to form a new conformation which we called ‘overturned’. We show that the combination of clustering and multidimensional scaling is a fast, easy, and powerful method in analyzing structural changes in proteins. Possible refined antibodies or new small molecular compounds could utilize the flexibility of the CC′-loop to improve immunotherapy.
molecular dynamics simulation, molecular conformation, antibodies, immunotherapy, checkpoint inhibitors, Article
molecular dynamics simulation, molecular conformation, antibodies, immunotherapy, checkpoint inhibitors, Article
7 Research products, page 1 of 1
- 2016IsRelatedTo
- 2015IsRelatedTo
- 2016IsRelatedTo
- 2020IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
