Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Physiol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Physiology
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification of ezrin as a target of gastrin in immature mouse gastric parietal cells

Authors: Adelina, Pagliocca; Peter, Hegyi; Viktoria, Venglovecz; Stephen A, Rackstraw; Zara, Khan; Galina, Burdyga; Timothy C, Wang; +3 Authors

Identification of ezrin as a target of gastrin in immature mouse gastric parietal cells

Abstract

The gastric acid‐secreting parietal cell exhibits profound morphological changes on stimulation. Studies in gastrin null (Gas‐KO) mice indicate that maturation of parietal cell function depends on the hormone gastrin acting at the G‐protein‐coupled cholecystokinin 2 receptor. The relevant cellular mechanisms are unknown. The application of differential mRNA display to samples of the gastric corpus of wild‐type (C57BL/6) and Gas‐KO mice identified the cytoskeletal linker protein, ezrin, as a previously unsuspected target of gastrin. Gastrin administered in vivo or added to gastric glands in vitro increased ezrin abundance in Gas‐KO parietal cells. In parietal cells of cultured gastric glands from wild‐type mice treated with gastrin, histamine or carbachol, ezrin was localized to vesicular structures resembling secretory canaliculi. In contrast, in cultured parietal cells from Gas‐KO mice, ezrin was typically distributed in the cytosol, and this did not change after incubation with gastrin, histamine or carbachol. However, priming with gastrin for approximately 24 h, either in vivo prior to cell culture or by addition to cultured gastric glands, induced the capacity for secretagogue‐stimulated localization of ezrin to large vesicular structures in Gas‐KO mice. Similarly, in a functional assay based on measurement of intracellular pH, cultured parietal cells from Gas‐KO mice were refractory to gastrin unless primed. The priming effect of gastrin was not attributable to the paracrine mediator histamine, but was prevented by inhibitors of protein kinase C and transactivation of the epidermal growth factor receptor. We conclude that in gastrin null mice there is reduced ezrin expression and a defect in ezrin subcellular distribution in gastric parietal cells, and that both can be reversed by priming with gastrin.

Related Organizations
Keywords

Mice, Knockout, Time Factors, Gene Expression Profiling, Secretory Vesicles, Cell Differentiation, ErbB Receptors, Gastric Acid, Mice, Inbred C57BL, Cytoskeletal Proteins, Mice, Protein Transport, Gene Expression Regulation, Parietal Cells, Gastric, Gastrins, Animals, Sodium-Potassium-Exchanging ATPase, Cells, Cultured, Protein Kinase C, Histamine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
gold