Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Obesityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Obesity
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Obesity
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Obesity
Article . 2010
versions View all 2 versions

Increased Expression of DNA Methyltransferase 3a in Obese Adipose Tissue: Studies With Transgenic Mice

Authors: Yasutomi, Kamei; Takayoshi, Suganami; Tatsuya, Ehara; Sayaka, Kanai; Koji, Hayashi; Yuji, Yamamoto; Shinji, Miura; +3 Authors

Increased Expression of DNA Methyltransferase 3a in Obese Adipose Tissue: Studies With Transgenic Mice

Abstract

Epigenetic mechanisms are likely to be involved in the development of obesity. This study was designed to examine the role of a DNA methyltransferase (Dnmt3a), in obese adipose tissue. The gene expression of Dnmts was examined by quantitative real‐time PCR analysis. Transgenic mice overexpressing Dnmt3a in the adipose tissue driven by the aP2 promoter were created (Dnmt3a mice). DNA methylation of downregulated genes was examined using bisulfite DNA methylation analysis. Dnmt3a mice were fed a methyl‐supplemented or high‐fat diet, and subjected to body weight measurement and gene expression analysis of the adipose tissue. Expression of Dnmt3a was markedly upregulated in the adipose tissue of obese mice. The complementary DNA (cDNA) microarray analysis of Dnmt3a mice revealed a slight decrease in the gene expression of secreted frizzled‐related protein 1 (SFRP1) and marked increase in that of interferon responsive factor 9 (IRF9). In the SFRP1 promoter, DNA methylation was not markedly increased in Dnmt3a mice relative to wild‐type mice. In experiments with a high‐fat diet or methyl‐supplemented diet, body weight did not differ significantly with the genotypes. Gene expression levels of inflammatory cytokines such as tumor necrosis factor‐α (TNF‐α) and monocyte chemoattractant protein‐1 (MCP‐1) were higher in Dnmt3a mice than in wild‐type mice on a high‐fat diet. This study suggests that increased expression of Dnmt3a in the adipose tissue may contribute to obesity‐related inflammation. The data highlight the potential role of Dnmt3a in the adult tissue as well as in the developing embryo and cancer.

Keywords

Male, Genotype, Gene Expression Profiling, Membrane Proteins, Mice, Transgenic, DNA Methylation, Fatty Acid-Binding Proteins, Dietary Fats, Interferon-Stimulated Gene Factor 3, gamma Subunit, DNA Methyltransferase 3A, Mice, Inbred C57BL, Disease Models, Animal, Mice, Adipose Tissue, Animals, Intercellular Signaling Peptides and Proteins, DNA (Cytosine-5-)-Methyltransferases, Inflammation Mediators, Cells, Cultured, Chemokine CCL2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
bronze