Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development

Authors: S H, Wang; A, Simcox; G, Campbell;

Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development

Abstract

Cell fate decisions in the early Drosophila wing disc assign cells to compartments (anterior or posterior and dorsal or ventral) and distinguish the future wing from the body wall (notum). Here we show that EGF-receptor (EGFR) signaling stimulated by its ligand, Vein, has a fundamental role in regulating two of these cell fate choices: (1) Vn/EGFR signaling directs cells to become notum by antagonizing wing development and by activating notum-specifying genes; (2) Vn/EGFR signaling directs cells to become part of the dorsal compartment by induction of apterous, the dorsal selector gene, and consequently also controls wing development, which depends on an interaction between dorsal and ventral cells.

Related Organizations
Keywords

Homeodomain Proteins, LIM-Homeodomain Proteins, Wnt1 Protein, Blotting, Northern, ErbB Receptors, Repressor Proteins, Gene Expression Regulation, Proto-Oncogene Proteins, Animals, Drosophila Proteins, Insect Proteins, Wings, Animal, Drosophila, Neuregulins, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal