Rescue of Aberrant Gating by a Genetically Encoded PAS (Per-Arnt-Sim) Domain in Several Long QT Syndrome Mutant Human Ether-á-go-go-related Gene Potassium Channels
Rescue of Aberrant Gating by a Genetically Encoded PAS (Per-Arnt-Sim) Domain in Several Long QT Syndrome Mutant Human Ether-á-go-go-related Gene Potassium Channels
Congenital long QT syndrome 2 (LQT2) is caused by loss-of-function mutations in the human ether-á-go-go-related gene (hERG) voltage-gated potassium (K(+)) channel. hERG channels have slow deactivation kinetics that are regulated by an N-terminal Per-Arnt-Sim (PAS) domain. Only a small percentage of hERG channels containing PAS domain LQT2 mutations (hERG PAS-LQT2) have been characterized in mammalian cells, so the functional effect of these mutations is unclear. We investigated 11 hERG PAS-LQT2 channels in HEK293 cells and report a diversity of functional defects. Most hERG PAS-LQT2 channels formed functional channels at the plasma membrane, as measured by whole cell patch clamp recordings and cell surface biotinylation. Mutations located on one face of the PAS domain (K28E, F29L, N33T, R56Q, and M124R) caused defective channel gating, including faster deactivation kinetics and less steady-state inactivation. Conversely, the other mutations caused no measurable differences in channel gating (G53R, H70R, and A78P) or no measurable currents (Y43C, C66G, and L86R). We used a genetically encoded hERG PAS domain (NPAS) to examine whether channel dysfunction could be corrected. We found that NPAS fully restored wild-type-like deactivation kinetics and steady-state inactivation to the hERG PAS-LQT2 channels. Additionally, NPAS rescued aberrant currents in hERG R56Q channels during a dynamic ramp voltage clamp. Thus, our results reveal a putative "gating face" in the PAS domain where mutations within this region form functional channels with altered gating properties, and we show that NPAS is a general means for rescuing aberrant gating in hERG LQT2 mutant channels and may be a potential biological therapeutic.
- University of Maryland, Baltimore United States
- University of Maryland School of Medicine United States
Models, Molecular, Electric Conductivity, Ether-A-Go-Go Potassium Channels, Protein Structure, Tertiary, Long QT Syndrome, HEK293 Cells, Mutation, Animals, Humans, Ion Channel Gating
Models, Molecular, Electric Conductivity, Ether-A-Go-Go Potassium Channels, Protein Structure, Tertiary, Long QT Syndrome, HEK293 Cells, Mutation, Animals, Humans, Ion Channel Gating
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
