Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Immunologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Immunology
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis

Authors: T. Sekiya; I. Kashiwagi; R. Yoshida; T. Fukaya; R. Morita; A. Kimura; H. Ichinose; +3 Authors

Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis

Abstract

Regulatory T cells (T(reg) cells) develop from progenitor thymocytes after the engagement of T cell antigen receptors (TCRs) with high-affinity ligands, but the underlying molecular mechanisms are still unclear. Here we show that the Nr4a nuclear receptors, which are encoded by immediate-early genes upregulated by TCR stimulation in thymocytes, have essential roles in T(reg) cell development. Mice that lacked all Nr4a factors could not produce T(reg) cells and died early owing to systemic autoimmunity. Nr4a receptors directly activated the promoter of the gene encoding the transcription factor Foxp3, and forced activation of Nr4a receptors bypassed low-strength TCR signaling to drive the T(reg) cell developmental program. Our results suggest that Nr4a receptors have key roles in determining CD4(+) T cell fates in the thymus and thus contribute to immune homeostasis.

Keywords

Mice, Knockout, Receptors, Steroid, Receptors, Thyroid Hormone, Receptors, Antigen, T-Cell, 610, Autoimmunity, Cell Differentiation, Forkhead Transcription Factors, Nerve Tissue Proteins, DNA-Binding Proteins, Mice, Nuclear Receptor Subfamily 4, Group A, Member 2, Nuclear Receptor Subfamily 4, Group A, Member 1, Animals, Homeostasis, RNA Interference, RNA, Small Interfering, Promoter Regions, Genetic, Genes, Immediate-Early, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    279
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
279
Top 1%
Top 1%
Top 1%