Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mechanisms of Develo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 1993 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Regulation of runt transcription by Drosophila segmentation genes

Authors: M, Klingler; J P, Gergen;

Regulation of runt transcription by Drosophila segmentation genes

Abstract

The runt gene plays an important role in the genetic hierarchy that generates the segmented body pattern during the early stages of Drosophila embryogenesis. We studied mRNA expression in mutant embryos in order to investigate the regulation of runt transcription during these stages. We used sensitive whole-mount in situ hybridization procedures to identify the earliest, and therefore most likely direct regulatory effects. There are several distinct phases of runt expression in the early embryo. We find that each phase depends on a different set of regulators. The first phase of expression is a broad-field of mRNA accumulation in the central regions of syncytial blastoderm stage embryos. This pattern is due to terminal repression by the anterior and terminal maternal systems. The effect of the terminal system, even at this early stage, is mediated by two zygotic gap genes, tailless and huckebein. A 7 stripe pattern of runt mRNA accumulation emerges during the process of cellularization. The initial formation of this pattern depends on position-specific repression by zygotic gap genes. Examination of the early RNA patterns of the pair-rule genes even-skipped, hairy, and fushi tarazu indicate that they are also regulated in a similar manner. Three pair-rule genes, hairy, even-skipped, and runt itself, also affect runt's 7 stripe pattern. The effects of runt are stripe specific; the effects of hairy are more uniform; and the patterns obtained in even-skipped mutant embryos show a combination of both stripe specific and uniform regulatory effects. A third distinct phase of expression occurs at the onset of gastrulation when runt becomes expressed in 14 stripes. fushi tarazu plays a negative regulatory role in generating this pattern, whereas the pair-rule genes paired and odd-paired are required for activating or maintaining runt expression during these stages.

Related Organizations
Keywords

Embryo, Nonmammalian, Transcription, Genetic, Zygote, Embryonic Development, Nuclear Proteins, Genes, Insect, DNA-Binding Proteins, Drosophila melanogaster, Gene Expression Regulation, Genes, Regulator, Morphogenesis, Animals, Drosophila Proteins, RNA, Messenger, Alleles, In Situ Hybridization, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 1%
Top 10%