Aberrant activation of ALK kinase by a novel truncated form ALK protein in neuroblastoma
doi: 10.1038/onc.2011.616
pmid: 22249260
Aberrant activation of ALK kinase by a novel truncated form ALK protein in neuroblastoma
Anaplastic lymphoma kinase (ALK) was originally identified from a rare subtype of non-Hodgkin's lymphomas carrying t(2;5)(p23;q35) translocation, where ALK was constitutively activated as a result of a fusion with nucleophosmin (NPM). Aberrant ALK fusion proteins were also generated in inflammatory fibrosarcoma and a subset of non-small-cell lung cancers, and these proteins are implicated in their pathogenesis. Recently, ALK has been demonstrated to be constitutively activated by gene mutations and/or amplifications in sporadic as well as familial cases of neuroblastoma. Here we describe another mechanism of aberrant ALK activation observed in a neuroblastoma-derived cell line (NB-1), in which a short-form ALK protein (ALK(del2-3)) having a truncated extracellular domain is overexpressed because of amplification of an abnormal ALK gene that lacks exons 2 and 3. ALK(del2-3) was autophosphorylated in NB-1 cells as well as in ALK(del2-3)-transduced cells and exhibited enhanced in vitro kinase activity compared with the wild-type kinase. ALK(del2-3)-transduced NIH3T3 cells exhibited increased colony-forming capacity in soft agar and tumorigenicity in nude mice. RNAi-mediated ALK knockdown resulted in the growth suppression of ALK(del2-3)-expressing cells, arguing for the oncogenic role of this mutant. Our findings provide a novel insight into the mechanism of deregulation of the ALK kinase and its roles in neuroblastoma pathogenesis.
- University of Tokyo Japan
- Gunma Children's Medical Center Japan
Receptor Protein-Tyrosine Kinases, Endoplasmic Reticulum, Enzyme Activation, Mice, Neuroblastoma, Cell Transformation, Neoplastic, Pyrimidines, Cell Line, Tumor, Gene Order, NIH 3T3 Cells, Animals, Humans, Anaplastic Lymphoma Kinase, Cell Proliferation, Sequence Deletion
Receptor Protein-Tyrosine Kinases, Endoplasmic Reticulum, Enzyme Activation, Mice, Neuroblastoma, Cell Transformation, Neoplastic, Pyrimidines, Cell Line, Tumor, Gene Order, NIH 3T3 Cells, Animals, Humans, Anaplastic Lymphoma Kinase, Cell Proliferation, Sequence Deletion
30 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
