Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development

Authors: Dorner, A; Wegmann, F; Butz, S; Wolburg-Buchholz, K; Wolburg, H; Mack, A; Nasdala, I; +4 Authors

Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development

Abstract

The coxsackievirus-adenovirus receptor (CAR) is a cell contact protein on various cell types with unknown physiological function. It belongs to a subfamily of the immunoglobulin-superfamily of which some members are junctional adhesion molecules on epithelial and/or endothelial cells. CAR is dominantly expressed in the hearts and brains of mice until the newborne phase after which it becomes mainly restricted to various epithelial cells. To understand more about the physiological function of CAR, we have generated CAR-deficient mice by gene targeting. We found that these mice die between E11.5 and E13.5 of embryonal development. Ultrastructural analysis of cardiomyocytes revealed that the density of myofibrils was reduced and that their orientation and bundling was disorganized. In addition, mitochondria were enlarged and glycogen storage strongly enriched. In line with these defects, we observed pericardial edema formation as a clear sign of insufficient heart function. Developmental abnormalities likely to be secondary effects of gene ablation were the persistent singular cardial atrio-ventricular canal and dilatations of larger blood vessels such as the cardinal veins. The secondary nature of these defects was supported by the fact that CAR was not expressed on vascular cells or on cells of the vascular wall. No obvious signs for alterations of the histological organization of the placenta were observed. We conclude that CAR is required for embryonal heart development, most likely due to its function during the organization of myofibrils in cardiomyocytes.

Keywords

Coxsackie and Adenovirus Receptor-Like Membrane Protein, Genomic Library, Endothelial Cells, Gene Expression Regulation, Developmental, Heart, Embryo, Mammalian, Cell Line, Mice, Myofibrils, Cardiovascular Diseases, Animals, Receptors, Virus, Myocytes, Cardiac

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    118
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
118
Top 10%
Top 10%
Top 10%
Green
hybrid