Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Physiology
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions

Non‐hematopoietic human bone marrow contains long‐lasting, pluripotential mesenchymal stem cells

Authors: Suva, Domizio; Garavaglia, Guido; Menetrey, Jacques; Chapuis, Bernard; Hoffmeyer, Pierre; Bernheim, Laurent; Kindler, Vincent Lucien;

Non‐hematopoietic human bone marrow contains long‐lasting, pluripotential mesenchymal stem cells

Abstract

AbstractMesenchymal stem cells (MSC) are considered as potential agents for reconstructive and gene‐targeting therapies since they differentiate into various cell‐lineages, exhibit an extended survival once injected into a host, and can easily be transfected with engineered DNA. MSC are essentially isolated from hematopoietic bone marrow (BM), a process that is rather invasive and may raise ethical concerns. In an attempt to find an alternative source, we evaluated whether non‐hematopoietic (nh)BM recovered from femoral heads of patients undergoing hip arthroplasty contained MSC. Ex vivo, 99% of nhBM cells were CD45+ leukocytes. After culture, leukocytes were replaced by a homogenous layer of adherent CD45− CD14− CD34− CD11b− CD90+ HLA‐ABC+ cells. Culture doubling time (mean = 4 days, range 1.6–6.7 days) was not correlated with patient age (27–81 years, n = 16). Amplified cultures supported long‐term hematopoiesis, and could be differentiated in vitro into adipocytes and chondrocytes. Moreover, a small fraction of nhBM cells spontaneously expressed MyoD1 and formed myotubes, suggesting that myogenic differentiation also occurred. nhBM contained clonogenic cells whose frequency (1/13,000), doubling time (2.1 days), and maximal amplification (up to 106‐fold) were not age‐related. All 14 clones analyzed (from five patients, ages 27–78 years) differentiated into at least one mesenchymal lineage, and 66% were bipotential (n = 8/12), or tripotential (n = 2/3). In conclusion, nhBM contains pluripotential mesenchymal progenitors which are similar to hematopoietic BM‐derived MSC, and whose biological functions are not altered by aging. Furthermore, if MSC‐based therapies hold their promises, nhBM may become the source of choice for responding to the increasing demand for MSC. J. Cell. Physiol. 198: 110–118, 2004. © 2003 Wiley‐Liss, Inc.

Related Organizations
Keywords

Adult, Pluripotent Stem Cells, 616.8, Chondrocytes/cytology/metabolism, Adipocytes/cytology/metabolism, Bone Marrow Cells, Bone Marrow Cells/cytology/ metabolism, Mesoderm, Myoblasts, Chondrocytes, 616, 617, Hematopoiesis/ physiology, Adipocytes, Cell Differentiation/physiology, Humans, Femur, Cells, Cultured, Aged, Aged, 80 and over, Pluripotent Stem Cells/cytology/ physiology, Myoblasts/metabolism, Cell Differentiation, Femur/cytology/metabolism, Middle Aged, Mesoderm/ cytology/metabolism, Hematopoiesis, Phenotype, Antigens, CD45/metabolism, Leukocyte Common Antigens, Cell Division, ddc: ddc:616.8

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 10%
Top 10%
Top 10%