Bestrophin-1 Enables Ca2+-activated Cl− Conductance in Epithelia
Bestrophin-1 Enables Ca2+-activated Cl− Conductance in Epithelia
Epithelial cells express calcium-activated Cl(-) channels of unknown molecular identity. These Cl(-) channels play a central role in diseases such as secretory diarrhea, polycystic kidney disease, and cystic fibrosis. The family of bestrophins has been suggested to form calcium-activated Cl(-) channels. Here, we demonstrate molecular and functional expression of bestrophin-1 (BEST1) in mouse and human airways, colon, and kidney. Endogenous calcium-activated whole cell Cl(-) currents coincide with endogenous expression of the Vmd2 gene product BEST1 in murine and human epithelial cells, whereas calcium-activated Cl(-) currents are absent in epithelial tissues lacking BEST1 expression. Blocking expression of BEST1 with short interfering RNA or applying an anti-BEST1 antibody to a patch pipette suppressed ATP-induced whole cell Cl(-) currents. Calcium-dependent Cl(-) currents were activated by ATP in HEK293 cells expressing BEST1. Thus, BEST1 may form the Ca2+-activated Cl(-) current, or it may be a component of a Cl(-) channel complex in epithelial tissues.
- University of Regensburg Germany
Epithelial Cells, Epithelium, Ion Channels, Cell Line, Mice, Adenosine Triphosphate, Chlorides, Chloride Channels, Organ Specificity, Animals, Humans, Calcium, Bestrophins, Eye Proteins
Epithelial Cells, Epithelium, Ion Channels, Cell Line, Mice, Adenosine Triphosphate, Chlorides, Chloride Channels, Organ Specificity, Animals, Humans, Calcium, Bestrophins, Eye Proteins
16 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).76 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
