Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

EphrinB3/EphA4-Mediated Guidance of Ascending and Descending Spinal Tracts

Authors: Paixão, Sónia; Balijepalli, Aarathi; Serradj, Najet; Niu, Jingwen; Luo, Wenqin; Martin, John H.; Klein, Rüdiger;

EphrinB3/EphA4-Mediated Guidance of Ascending and Descending Spinal Tracts

Abstract

The spinal cord contains many descending and ascending longitudinal tracts whose development appears to be controlled by distinct guidance systems. We identified a population of dorsal spinal neurons marked by coexpression of the transcription factor Zic2 and the guidance receptor EphA4. Zic2+;EphA4+ neurons are surrounded by mechanosensory terminals, suggesting innervation by mechanoreceptor afferents. Their axons form an ipsilateral ascending pathway that develops during embryogenesis and projects within the ventral aspect of the dorsal funiculus, the same location as the descending corticospinal tract (CST), which develops postnatally. Interestingly, the same guidance mechanism, namely, ephrinB3-induced EphA4 forward signaling, is required for the guidance of both ascending and descending axon tracts. Our analysis of conditional EphA4 mutant mice also revealed that the development of the dorsal funiculus occurs independently of EphA4 expression in descending CST axons and is linked to the distribution of Zic2+;EphA4+ spinal neurons and the formation of the ascending pathway.

Keywords

Central Nervous System, Mice, Knockout, Neuroscience(all), Receptor, EphA4, Embryonic Development, Ephrin-B3, Gene Expression Regulation, Developmental, Mice, Transgenic, Axons, Posterior Horn Cells, Mice, Spinal Cord, Cell Tracking, Interneurons, Neural Pathways, Animals, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
hybrid