Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Recruitment of Distinct Chromatin-modifying Complexes by Tamoxifen-complexed Estrogen Receptor at Natural Target Gene Promoters in Vivo

Authors: Xue-Feng, Liu; Milan K, Bagchi;

Recruitment of Distinct Chromatin-modifying Complexes by Tamoxifen-complexed Estrogen Receptor at Natural Target Gene Promoters in Vivo

Abstract

Tamoxifen, a breast cancer therapeutic, is a tissue-selective estrogen receptor modulator (SERM), which acts as an antiestrogen in the mammary tissue and displays estrogenic activity in other tissues such as bone and uterus. In order to understand the mechanisms underlying the antiestrogenic effect of this prototype SERM, we performed an analysis of the cofactors that interact with ER complexed with 4-hydroxytamoxifen (OHT) at natural target genes in a human breast tumor cell line MCF-7. Employing chromatin immunoprecipitation (ChIP), we observed that treatment with OHT rapidly induces the binding of ERalpha to the E-responsive promoter regions of pS2 and c-myc genes. Promoter-bound OHT-complexed ERa coordinately recruited the components of a multiprotein complex containing the corepressor NCoR, histone deacetylase 3 (HDAC3), and a WD40-repeat protein TBL1. Surprisingly, the OHT-complexed ERalpha also recruited a chromatin-remodeling NuRD complex in which histone deacetylase 1 (HDAC1) is associated with several polypeptides including metastasis-associated protein 1/2 (MTA1/2), and SWI2/SNF2-related ATPase Mi2. Kinetic studies revealed that following OHT addition the recruitment of these HDAC complexes to pS2 or the c-myc promoter occurs in a sequential manner; the NCoR-HDAC3 complex is recruited earlier than the NuRD complex. Serial ChIP experiments indicated that the ER-NCoR-HDAC3 and ER-NuRD complexes are distinct, and they do not occupy the target gene promoter simultaneously. We also established a close temporal link between the appearance of the HDAC complexes at the E-responsive regions of pS2 and c-myc promoters, local hypoacetylation of specific lysine residues in N-terminal tails of histones H3 and H4, and disappearance of RNA polymerase II from the target gene loci. Collectively, our studies indicated that transcriptional repression by tamoxifen-bound ER at E-regulated gene promoters involves a dynamic interplay of multiple distinct chromatin-modifying/remodeling complexes.

Keywords

Time Factors, Reverse Transcriptase Polymerase Chain Reaction, Estrogen Receptor alpha, Estrogens, Histone Deacetylase 1, Precipitin Tests, Chromatin, Histone Deacetylases, Histones, Repressor Proteins, Kinetics, Tamoxifen, Receptors, Estrogen, Cell Line, Tumor, Humans, RNA Polymerase II, Peptides, Promoter Regions, Genetic, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    117
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
117
Top 10%
Top 10%
Top 1%
gold
Related to Research communities
Cancer Research