Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2002 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PLANT PHYSIOLOGY
Article . 2002
versions View all 3 versions

Inactivation of the Phloem-Specific Dof Zinc Finger GeneDAG1Affects Response to Light and Integrity of the Testa of Arabidopsis Seeds

Authors: M. Papi; SABATINI, Sabrina; ALTAMURA, Maria Maddalena; L. Hennig; E. Schafer; COSTANTINO, Paolo; VITTORIOSO, Paola;

Inactivation of the Phloem-Specific Dof Zinc Finger GeneDAG1Affects Response to Light and Integrity of the Testa of Arabidopsis Seeds

Abstract

AbstractWe show here that seeds from the knockout mutant of the Arabidopsis DAG1 gene encoding a Dof zinc finger transcription factor have an altered response to red and far-red light. Mutant dag1 seeds are induced to germinate by much lower red light fluence rates, and germination reaches more quickly a point where it is independent of phytochrome signaling. Moreover, although microscopic analysis reveals no obvious structural alterations in the seed coat (testa) of dag1 seeds, staining assays with different dyes point to an abnormal fragility of the testa. By extensive in situ mRNA hybridization analysis we show here that the gene, which is not expressed in the embryo, is specifically expressed in the phloem of all organs of the mother plant.

Keywords

Light, Arabidopsis Proteins, Arabidopsis, Biological Transport, Germination, Zinc Fingers, DNA-Binding Proteins, Gene Expression Regulation, Plant, RNA, Plant, Mutation, Seeds, Phytochrome, In Situ Hybridization, Plant Proteins, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
hybrid