Powered by OpenAIRE graph

The Origin Recognition Complex, SIR1 , and the S Phase Requirement for Silencing

Authors: Fox, Catherine A.; Ehrenhofer-Murray, Ann; Loo, Stephen; Rine, Jasper;

The Origin Recognition Complex, SIR1 , and the S Phase Requirement for Silencing

Abstract

Silencing of transcription in Saccharomyces cerevisiae has several links to DNA replication, including a role for the origin recognition complex (ORC), the DNA replication initiator, in both processes. In addition, the establishment of silencing at the HML and HMR loci requires cells to pass through the S phase of the cell cycle. Passage through S phase was required for silencing of HMR even under conditions in which ORC itself was no longer required. The requirement for ORC in silencing of HMR could be bypassed by tethering the Sir1 protein to the HMR-E silencer. However, ORC had a Sir1-independent role in transcriptional silencing at telomeres. Thus, the role of ORC in silencing was separable from its role in initiation, and the role of S phase in silencing was independent of replication initiation at the silencers.

Related Organizations
Keywords

DNA Replication, Saccharomyces cerevisiae Proteins, Transcription, Genetic, Recombinant Fusion Proteins, Chemie, Origin Recognition Complex, Saccharomyces cerevisiae, Telomere, Chromatin, S Phase, DNA-Binding Proteins, Fungal Proteins, Gene Expression Regulation, Fungal, Trans-Activators, Chromosomes, Fungal, DNA, Fungal, Biologie, Aldose-Ketose Isomerases, Silent Information Regulator Proteins, Saccharomyces cerevisiae

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 10%
Top 10%
Top 1%