Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioural Brain Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Behavioural Brain Research
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Behavioural Brain Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Behavioural Brain Research
Article . 2016
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2016
Data sources: UCL Discovery
versions View all 6 versions

Differences in the performance of NK1R−/− (‘knockout’) and wildtype mice in the 5‑Choice Continuous Performance Test

Authors: Porter, AJ; Pillidge, K; Stanford, SC; Young, JW;

Differences in the performance of NK1R−/− (‘knockout’) and wildtype mice in the 5‑Choice Continuous Performance Test

Abstract

Mice lacking functional NK1 (substance P-preferring) receptors typically display excessive inattentiveness (omission errors) and impulsivity (premature responses) when compared with wildtypes in the 5-Choice Serial Reaction-Time Test (5-CSRTT). These abnormal behaviours are analogous to those seen in humans suffering from Attention Deficit Hyperactivity Disorder (ADHD). Here we used the 5-Choice Continuous‑Performance Test (5C-CPT) to ascertain whether NK1R-/- mice also display excessive false alarms (an inappropriate response to a 'no-go' signal), which is another form of impulsive behaviour. NK1R-/- mice completed more trials than wildtypes, confirming their ability to learn and carry out the task. At the start of Stage 1 of training, but not subsequently, they also scored more premature responses than wildtypes. When the mice were tested for the first time, neither false alarms nor premature responses was higher in NK1R-/- mice than wildtypes but, as in the 5-CSRTT, the latter behaviour was strongly dependent on time of day. NK1R-/- mice expressed excessive perseveration during all stages of the 5C-CPT. This behaviour is thought to reflect compulsive checking, which is common in ADHD patients. These findings point to differences in the 5-CSRTT and 5C-CPT protocols that could be important for distinguishing why the cognitive performance and response control of NK1R-/- mice differs from their wildtypes. The results further lead to the prediction that ADHD patients with polymorphism of the TACR1 gene (the human equivalent of Nk1r) would express more perseveration, but not false alarms, in Continuous Performance Tests when compared with other groups of subjects.

Keywords

Research Report, Male, Impulsivity, False alarms, Mice, 129 Strain, Perseveration, Neuropsychological Tests, Choice Behavior, NK1 receptor, Extinction, Psychological, Behavioral Neuroscience, Impulsivity behaviour, ADHD, Animals, Mice, Knockout, Receptors, Neurokinin-1, Motor disinhibition, Mice, Inbred C57BL, Disease Models, Animal, Attention Deficit Disorder with Hyperactivity, Impulsive Behavior, 5-Choice continuous-performance test, Inattentiveness, Premature responses, Psychomotor Performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid