Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Stimulation of Flap Endonuclease-1 by the Bloom's Syndrome Protein

Authors: Sudha, Sharma; Joshua A, Sommers; Leonard, Wu; Vilhelm A, Bohr; Ian D, Hickson; Robert M, Brosh;

Stimulation of Flap Endonuclease-1 by the Bloom's Syndrome Protein

Abstract

Bloom's syndrome (BS) is a rare autosomal recessive genetic disorder associated with genomic instability and an elevated risk of cancer. Cellular features of BS include an accumulation of abnormal replication intermediates and increased sister chromatid exchange. Although it has been suggested that the underlying defect responsible for hyper-recombination in BS cells is a temporal delay in the maturation of DNA replication intermediates, the precise role of the BS gene product, BLM, in DNA metabolism remains elusive. We report here a novel interaction of the BLM protein with the human 5'-flap endonuclease/5'-3' exonuclease (FEN-1), a genome stability factor involved in Okazaki fragment processing and DNA repair. BLM protein stimulates both the endonucleolytic and exonucleolytic cleavage activity of FEN-1 and this functional interaction is independent of BLM catalytic activity. BLM and FEN-1 are associated with each other in human nuclei as shown by their reciprocal co-immunoprecipitation from HeLa nuclear extracts. The BLM-FEN-1 physical interaction is mediated through a region of the BLM C-terminal domain that shares homology with the FEN-1 interaction domain of the Werner syndrome protein, a RecQ helicase family member homologous to BLM. This study provides the first evidence for a direct interaction of BLM with a human nucleolytic enzyme. We suggest that functional interactions between RecQ helicases and Rad2 family nucleases serve to process DNA substrates that are intermediates in DNA replication and repair.

Keywords

Adenosine Triphosphatases, Cell Nucleus, DNA Replication, Endodeoxyribonucleases, DNA Repair, Dose-Response Relationship, Drug, Models, Genetic, Flap Endonucleases, DNA Helicases, Oligonucleotides, Enzyme-Linked Immunosorbent Assay, DNA, Precipitin Tests, Catalysis, DNA-Binding Proteins, Kinetics, Exodeoxyribonucleases, Humans, Amylose, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research