Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY NC
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
University of Basel: edoc
Article . 2019
License: CC BY NC
RNA
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1101/656405...
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.5451/uni...
Other literature type . 2019
Data sources: Datacite
RNA
Article . 2020
versions View all 6 versions

Local translation of yeast ERG4 mRNA at the endoplasmic reticulum requires the brefeldin A resistance protein Bfr1

Authors: Manchalu, Srinivas; Mittal, Nitish; Spang, Anne; Jansen, Ralf-Peter;

Local translation of yeast ERG4 mRNA at the endoplasmic reticulum requires the brefeldin A resistance protein Bfr1

Abstract

Brefeldin A resistance factor 1 (Bfr1p) is a nonessential RNA-binding protein and multicopy suppressor of brefeldin A sensitivity in Saccharomyces cerevisiae. Deletion of BFR1 leads to multiple defects, including altered cell shape and size, change in ploidy, induction of P-bodies and chromosomal missegregation. Bfr1p has been shown to associate with polysomes, binds to several hundred mRNAs, and can target some of them to P-bodies. Although this implies a role of Bfr1p in translational control of mRNAs, its molecular function remains elusive. In the present study, we show that mutations in RNA-binding residues of Bfr1p impede its RNA-dependent colocalization with ER, yet do not mimic the known cellular defects seen upon BFR1 deletion. However, a Bfr1 RNA-binding mutant is impaired in binding to ERG4 mRNA, which encodes an enzyme required for the final step of ergosterol biosynthesis. Consistently, bfr1Δ strains show a strong reduction in Erg4p protein levels, most likely because of degradation of misfolded Erg4p. Polysome profiling of bfr1Δ or bfr1 mutant strains reveals a strong shift of ERG4 mRNA to polysomes, consistent with a function of Bfr1p in elongation or increased ribosome loading. Collectively, our data reveal that Bfr1 has at least two separable functions: one in RNA binding and cotranslational protein translocation into the ER and one in ploidy control or chromosome segregation.

Keywords

RNA-Binding Proteins, Endoplasmic Reticulum, Article, RNA Transport, Repressor Proteins, Protein Transport, Protein Biosynthesis, Yeasts, RNA, Messenger, Oxidoreductases, Ribosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
bronze