Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1989 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1989
versions View all 2 versions

Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos

Authors: Gary Struhl;

Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos

Abstract

Opposing anterior and posterior morphogen systems specify the segmented body pattern of Drosophila. The anterior morphogen, bicoid, exerts a direct, instructive influence on head and thoracic pattern by triggering different outcomes according to changes in its concentration along the body. In contrast, the posterior morphogen, nanos, simply defines where abdominal patterning can occur by eliminating an otherwise ubiquitous repressor, hunchback protein, from the posterior half of the embryo. Within this hunchback-free domain the pattern of abdominal segments must be specified by other morphogens, possibly by shorter range gradients of the products of zygotic gap genes Kruppel, knirps and tailless.

Related Organizations
Keywords

Repressor Proteins, Phenotype, Gene Expression Regulation, Larva, Mutation, Morphogenesis, Animals, Drosophila, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    211
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
211
Top 10%
Top 1%
Top 1%