Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo

Authors: Denis M, Schewe; Julio A, Aguirre-Ghiso;

ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo

Abstract

The pathways that allow quiescent disseminated cancer cells to survive during prolonged dormancy periods are unknown. Here, we identify the transcription factor ATF6α as a pivotal survival factor for quiescent but not proliferative squamous carcinoma cells. ATF6α is essential for the adaptation of dormant cells to chemotherapy, nutritional stress, and, most importantly, the in vivo microenvironment. Mechanism analysis showed that MKK6 and p38α/β contribute to regulating nuclear translocation and transcriptional activation of ATF6α in dormant cancer cells. Downstream, ATF6α induces survival through the up-regulation of Rheb and activation of mTOR signaling independent of Akt. Down-regulation of ATF6α or Rheb reverted dormant tumor cell resistance to rapamycin and induced pronounced killing only of dormant cancer cells in vivo . Knocking down ATF6α also prolonged the survival of nude mice bearing dormant tumor cells. Targeting survival signaling by the ATF6α-Rheb-mTOR pathway in dormant tumor cells may favor the eradication of residual disease during dormancy periods.

Keywords

Mice, Inbred BALB C, TOR Serine-Threonine Kinases, Neuropeptides, MAP Kinase Kinase 6, Endoplasmic Reticulum, p38 Mitogen-Activated Protein Kinases, Activating Transcription Factor 6, Mice, Cell Line, Tumor, Neoplasms, Carcinoma, Squamous Cell, Animals, Humans, Ras Homolog Enriched in Brain Protein, Protein Kinases, Neoplasm Transplantation, Monomeric GTP-Binding Proteins, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    622
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
622
Top 1%
Top 1%
Top 1%
bronze