Phosphoinositides in yeast: genetically tractable signalling
pmid: 12702458
Phosphoinositides in yeast: genetically tractable signalling
Research on signalling through phosphoinositides has made tremendous advances over the last few years. Studies with budding yeast (Saccharomyces cerevisiae) combine the advantage of a eukaryotic system with those of a rapidly growing, genetically modifiable and tractable organism of which the genome is fully sequenced. Hence, despite some differences in phosphoinositide signalling between mammals and yeast (e.g. the absence of PtdIns(3,4,5)P(3)), this model organism is at the forefront of phosphoinositide research. In this review we will focus on recent discoveries concerning the role of phosphoinositides in yeast.
- KU Leuven Belgium
Saccharomyces cerevisiae Proteins, Gene Expression Regulation, Fungal, Type C Phospholipases, Saccharomyces cerevisiae, Phosphatidylinositols, Signal Transduction
Saccharomyces cerevisiae Proteins, Gene Expression Regulation, Fungal, Type C Phospholipases, Saccharomyces cerevisiae, Phosphatidylinositols, Signal Transduction
22 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
