Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Haematologicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Haematologica
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Haematologica
Article
License: publisher-specific license
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Haematologica
Article . 2008
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Haematologica
Article . 2008
Data sources: DOAJ
versions View all 3 versions

ABL single nucleotide polymorphisms may masquerade as BCR-ABL mutations associated with resistance to tyrosine kinase inhibitors in patients with chronic myeloid leukemia

Authors: Thomas Ernst; Jana Hoffmann; Philipp Erben; Benjamin Hanfstein; Armin Leitner; Rüdiger Hehlmann; Andreas Hochhaus; +1 Authors

ABL single nucleotide polymorphisms may masquerade as BCR-ABL mutations associated with resistance to tyrosine kinase inhibitors in patients with chronic myeloid leukemia

Abstract

The BCR-ABL K247R change is based on a rare single nucleotide polymorphism occurring likewise in healthy controls and non-hematologic cell types. Despite its juxtaposition to the P-loop, functional analysis showed no alteration compared to non-mutated BCR-ABL. We sought to investigate if other changes in the BCR-ABL kinase domain should be considered as single nucleotide polymorphisms rather than acquired mutations. A total of 911 chronic myeloid leukemia patients after failure or suboptimal response to imatinib were screened for BCR-ABL kinase domain mutations. Single nucleotide polymorphism analysis was based on the search for nucleotide changes in corresponding normal, non-translocated ABL alleles by ABL allele-specific PCR following mutation analysis. In addition to the K247R polymorphism we uncovered five new single nucleotide polymorphisms within the BCR-ABL kinase domain; two of them led to amino acid changes. Single nucleotide polymorphisms could theoretically contribute to primary but not to secondary resistance to tyrosine kinase inhibitors and must therefore be distinguished from acquired mutations. Novel point mutations should be confirmed by analyzing the normal ABL alleles to exclude polymorphisms.

Keywords

Adult, Aged, 80 and over, Male, Adolescent, Base Sequence, Fusion Proteins, bcr-abl, Middle Aged, Protein-Tyrosine Kinases, Polymorphism, Single Nucleotide, Drug Resistance, Neoplasm, Leukemia, Myeloid, Chronic Disease, Mutation, Humans, Diseases of the blood and blood-forming organs, Female, RC633-647.5, Protein Kinase Inhibitors, Sequence Analysis, Alleles, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research