Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cardiovascular Diabe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2010 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2010
Data sources: DOAJ
versions View all 5 versions

PPARγ gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus

Authors: Wang Jinghua; Ma Yexin; Xiao Jianming; Chao Shengping; Xiong Shixi; Wan Jing; Roy Sabita;

PPARγ gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus

Abstract

Abstract Background Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor, which regulates gene expression of the key proteins involved in lipid metabolism, vascular inflammation, and proliferation. PPARγ may contribute to attenuating atherogenesis and postangioplasty restenosis. PPARγ C161→T substitution is associated with a reduced risk of coronary artery disease (CAD). Whether or not the gene substitution alters the risk of CAD in type 2 diabetes mellitus (T2DM) patients remains unclear. Methods A total of 556 unrelated subjects from a Chinese Han population, including 89 healthy subjects, 78 CAD patients, 86 T2DM patients, and 303 CAD combined with T2DM patients, were recruited to enroll in this study. PPARγC161→T gene polymorphism was determined by polymerase chain reaction and restriction fragment length polymorphisms. Plasma levels of lipoproteins, apolipoproteins, glucose, and insulin were measured by ELISA or radioimmunoassay (RIA). The coronary artery lesions were evaluated by coronary angiography. Results The frequency of the 161T allele in CAD, T2DM, and CAD combined with T2DM patients was similar to that observed in the healthy control group. However, in CAD combined with T2DM patients, the group with angiographically documented moderate stenoses had a higher frequency of the 161T allele in comparison to the group with severe stenoses (P < 0.05). Moreover, in CAD with T2DM patients, the triglyceride levels and apoB in CC homozygote carriers were significantly higher than those in "T" allele carriers. Conclusions PPARγC161→T genotypes weren't significantly associated with the risk of CAD, but were markedly correlated with severity of disease vessels in patients with CAD and T2DM. Furthermore, PPARγC161→T substitution was associated with an altered adipose, but not glucose metabolism. These results indicate that the PPARγ C161→T polymorphism may reduce the risk of severe atherogenesis by modulation of adipose metabolism, especially triglycerides and apoB, in Chinese patients with CAD and T2DM.

Keywords

Blood Glucose, Male, China, Genotype, Endocrinology, Diabetes and Metabolism, Coronary Disease, Coronary Restenosis, Gene Frequency, Diseases of the circulatory (Cardiovascular) system, Humans, Insulin, Original investigation, Aged, Apolipoproteins B, Angioplasty, Exons, Middle Aged, Atherosclerosis, Lipids, Adipose Tissue, Diabetes Mellitus, Type 2, RC666-701, Female, Insulin Resistance, Cardiology and Cardiovascular Medicine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
Green
gold