Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Dynami...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
HKU Scholars Hub
Article . 2016
Data sources: HKU Scholars Hub
versions View all 3 versions

DRG11 immunohistochemical expression during embryonic development in the mouse

Authors: Osório, Liliana; Reguenga, Carlos; Rebelo, Sandra; Pereira, Carlos; Lopes, Claúdia; Lima, Deolinda;

DRG11 immunohistochemical expression during embryonic development in the mouse

Abstract

AbstractDRG11 is a paired domain transcription factor that is necessary for the assembly of the nociceptive circuitry in the spinal cord dorsal horn. It is expressed in small dorsal root ganglion (DRG) neurons and in their projection area in the spinal cord. Drg11 knockout mice exhibit structural and neurochemical defects both at the DRG and spinal superficial dorsal horn and present reduced nociceptive responses. In this study, a polyclonal antibody against DRG11 was generated and used for a detailed systematic spatio‐temporal analysis of DRG11 expression during development. DRG11 is first detected at E10.5 in the spinal dorsal horn, DRG and trigeminal ganglion, where it persists until P14‐21. At the cranial level, DRG11 expression is observed from E10.5 up to the same early post‐natal ages in several cranial sensory ganglia and brain nuclei. These results suggest that DRG11 is required for the establishment of the first neuronal sensory relay along development. Developmental Dynamics 236:2653–2660, 2007. © 2007 Wiley‐Liss, Inc.

Keywords

Homeodomain Proteins, Mice, Knockout, Neurons, Genotype, Brain, Gene Expression Regulation, Developmental, Nerve Tissue Proteins, Embryo, Mammalian, Mice, Spinal Cord, Ganglia, Spinal, Animals, Tissue Distribution, Brainstem, Body Patterning, Developmental Biology, Subcellular Fractions, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%