Reconstructing the phylogeny of 21 completely sequenced arthropod species based on their motor proteins
pmid: 19383156
pmc: PMC2674883
Reconstructing the phylogeny of 21 completely sequenced arthropod species based on their motor proteins
Abstract Background Motor proteins have extensively been studied in the past and consist of large superfamilies. They are involved in diverse processes like cell division, cellular transport, neuronal transport processes, or muscle contraction, to name a few. Vertebrates contain up to 60 myosins and about the same number of kinesins that are spread over more than a dozen distinct classes. Results Here, we present the comparative genomic analysis of the motor protein repertoire of 21 completely sequenced arthropod species using the owl limpet Lottia gigantea as outgroup. Arthropods contain up to 17 myosins grouped into 13 classes. The myosins are in almost all cases clear paralogs, and thus the evolution of the arthropod myosin inventory is mainly determined by gene losses. Arthropod species contain up to 29 kinesins spread over 13 classes. In contrast to the myosins, the evolution of the arthropod kinesin inventory is not only determined by gene losses but also by many subtaxon-specific and species-specific gene duplications. All arthropods contain each of the subunits of the cytoplasmic dynein/dynactin complex. Except for the dynein light chains and the p150 dynactin subunit they contain single gene copies of the other subunits. Especially the roadblock light chain repertoire is very species-specific. Conclusion All 21 completely sequenced arthropods, including the twelve sequenced Drosophila species, contain a species-specific set of motor proteins. The phylogenetic analysis of all genes as well as the protein repertoire placed Daphnia pulex closest to the root of the Arthropoda. The louse Pediculus humanus corporis is the closest relative to Daphnia followed by the group of the honeybee Apis mellifera and the jewel wasp Nasonia vitripenni s. After this group the rust-red flour beetle Tribolium castaneum and the silkworm Bombyx mori diverged very closely from the lineage leading to the Drosophila species.
- Max Planck Digital Library Germany
- University of Göttingen Germany
- Max Planck Society Germany
- Max Planck Institute for Multidisciplinary Sciences Germany
- Max Planck Institute for Biophysical Chemistry Germany
Comparative Genomic Hybridization, Dyneins, Kinesins, Dynactin Complex, QH426-470, Myosins, 540, Genetics, Animals, Drosophila, Arthropods, Microtubule-Associated Proteins, TP248.13-248.65, Phylogeny, Biotechnology, Research Article
Comparative Genomic Hybridization, Dyneins, Kinesins, Dynactin Complex, QH426-470, Myosins, 540, Genetics, Animals, Drosophila, Arthropods, Microtubule-Associated Proteins, TP248.13-248.65, Phylogeny, Biotechnology, Research Article
136 Research products, page 1 of 14
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
