Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Organ‐specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene‐targeting of the PI3K regulatory isoforms p85α, p55α, and p50α

Authors: Mouta-Bellum, C.; Kirov, A.; Miceli-Libby, L.; Mancini, M.L.; Petrova, T.V.; Liaw, L.; Prudovsky, I.; +6 Authors

Organ‐specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene‐targeting of the PI3K regulatory isoforms p85α, p55α, and p50α

Abstract

AbstractThe phosphoinositide 3‐kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85α, p55α, and p50α impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage‐dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell‐origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up‐regulation of the transforming growth factor‐β co‐receptor endoglin, and reduced levels of mature vascular endothelial growth factor‐C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis. Developmental Dynamics 238:2670–2679, 2009. © 2009 Wiley‐Liss, Inc.

Keywords

Mice, Knockout, Lymphangiectasis, Animals; Animals, Newborn/anatomy & histology; Animals, Newborn/physiology; Gene Targeting; Isoenzymes/genetics; Isoenzymes/metabolism; Lymphangiectasis/pathology; Lymphangiectasis/physiopathology; Lymphangiogenesis/physiology; Lymphatic Vessels/abnormalities; Lymphatic Vessels/anatomy & histology; Mice; Mice, Knockout; Phosphatidylinositol 3-Kinases/genetics; Phosphatidylinositol 3-Kinases/metabolism; Protein Subunits/genetics; Protein Subunits/metabolism; Signal Transduction/physiology, Isoenzymes, Mice, Phosphatidylinositol 3-Kinases, Protein Subunits, Animals, Newborn, Gene Targeting, Animals, Lymphangiogenesis, Lymphatic Vessels, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Green
bronze