Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Evolutionarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Evolution
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Evolution
Article . 2011
versions View all 2 versions

EARLY LIFE BENEFITS AND LATER LIFE COSTS OF A TWO AMINO ACID DELETION INDROSOPHILA SIMULANS

Authors: J William O, Ballard; Richard G, Melvin;

EARLY LIFE BENEFITS AND LATER LIFE COSTS OF A TWO AMINO ACID DELETION INDROSOPHILA SIMULANS

Abstract

Linking naturally occurring genotypic variation to the organismal phenotype is critical to our understanding of, and ability to, model biological processes such as adaptation to novel environments, disease, and aging. Rarely, however, does a simple mutation cause a single simple observable trait. Rather it is more common for a mutation to elicit an entangled web of responses. Here, we employ biochemistry as the thread to link a naturally occurring two amino acid deletion in a nuclear encoded mitochondrial protein with physiological benefits and costs in the fly Drosophila simulans. This nuclear encoded gene produces a protein that is imported into the mitochondrion and forms a subunit of complex IV (cytochrome c oxidase, or cox) of the electron transport chain. We observe that flies homozygous for the deletion have an advantage when young but pay a cost later in life. These data show that the organism responds to the deletion in a complex manner that gives insight into the mechanisms that influence mitochondrial bioenergetics and aspects of organismal physiology.

Keywords

Cell Nucleus, Male, Reproduction, DNA, Mitochondrial, Electron Transport Complex IV, Protein Subunits, Animals, Drosophila, Female, Amino Acid Sequence, Energy Metabolism, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%