Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 1997 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions

DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana

Authors: C, Xiang; Z, Miao; E, Lam;

DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana

Abstract

The TGA genes encode a family of basic domain-leucine zipper (bZIP) transcription factors that are conserved in higher plants. We have continued to unravel the complexity of this gene family by using a polymerase chain reaction (PCR)-based approach. Taking advantage of the conserved amino acid sequence in the bZIP domain found in all members of this gene family, two degenerate oligonucleotides were synthesized based on the sequence of this region in order to amplify by PCR the analogous genomic fragments from the various TGA loci in Arabidopsis. This approach has led us to the finding of a new member of the TGA gene family, and subsequently the isolation of a gene designated as TGA6. Further characterization of the TGA6 locus confirmed our prediction that the gene structure of this family is remarkably conserved. Genomic Southern blot analysis revealed that TGA6 is a single-copy gene in Arabidopsis. Based on the genomic sequence information, gene-specific primers were synthesized for isolating the cDNA that corresponds to the coding region. Subsequently, the cDNA for TGA6 was cloned and sequenced. Gel mobility shift assays with in vitro translated TGA6 protein showed that TGA6 is more like TGA5 in terms of its in vitro DNA-binding properties. The expression of TGA6 in different tissues was estimated by using reverse transcriptase (RT)-PCR and further analyzed in transgenic Arabidopsis lines expressing a TGA6 promoter-GUS fusion. TGA6 promoter activity is found primarily in roots of young seedlings. As seedlings develop, TGA6 is expressed in aging cotyledons, mesophyll cells of hydathodes on leaf margins, vascular tissue and trichomes of senescing rosette leaves, but is very low in primary roots of mature plants. High levels of expression persist in young lateral roots and in regions of the primary root where lateral roots are emerging. In flowers, the activity is localized predominantly to mature pollen grains. The expression pattern of TGA6 reported here is strikingly similar to that of an Arabidopsis acidic chitinase gene. Possible biological significance of TGA6 in cellular defense against pathogens and abiotic stress is discussed.

Related Organizations
Keywords

Leucine Zippers, Base Sequence, Sequence Homology, Amino Acid, Arabidopsis Proteins, Recombinant Fusion Proteins, Molecular Sequence Data, Arabidopsis, Genes, Plant, Polymerase Chain Reaction, DNA-Binding Proteins, Basic-Leucine Zipper Transcription Factors, Multigene Family, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment, DNA Primers, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%