Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2022
License: CC BY NC SA
versions View all 2 versions

FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model

Authors: Legeai-Mallet L.; Cornille, Maxence; Moriceau, Stephanie; Khonsari, Roman H.; Heuzé, Yann; Loisay, Léa; Boitez, Valérie; +13 Authors

FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model

Abstract

Crouzon syndrome with acanthosis nigricans (CAN, a rare type of craniosynostosis characterized by premature suture fusion and neurological impairments) has been linked to a gain-of-function mutation (p.Ala391Glu) in fibroblast growth factor receptor 3 (FGFR3). To characterize the CAN mutation's impact on the skull and on brain functions, we developed the first mouse model (Fgfr3A385E/+) of this syndrome. Surprisingly, Fgfr3A385E/+ mice did not exhibit craniosynostosis but did show severe memory impairments, a structurally abnormal hippocampus, low activity-dependent synaptic plasticity, and overactivation of MAPK/ERK and Akt signaling pathways in the hippocampus. Systemic or brain-specific pharmacological inhibition of FGFR3 overactivation by BGJ398 injections rescued the memory impairments observed in Fgfr3A385E/+ mice. The present study is the first to have demonstrated cognitive impairments associated with brain FGFR3 overactivation, independently of skull abnormalities. Our results provide a better understanding of FGFR3's functional role and the impact of its gain-of-function mutation on brain functions. The modulation of FGFR3 signaling might be of value for treating the neurological disorders associated with craniosynostosis.

Journal of Experimental Medicine, 219 (4)

ISSN:0022-1007

ISSN:1540-0069

ISSN:1540-9538

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities