Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Structural & ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Structural & Molecular Biology
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Crystal structure of human DGCR8 core

Authors: Sohn, SY; Bae, WJ; Kim, JJ; Yeom, KH; Kim, VN; Cho, Y;
Abstract

A complex of Drosha with DGCR8 (or its homolog Pasha) cleaves primary microRNA (pri-miRNA) substrates into precursor miRNA and initiates the microRNA maturation process. Drosha provides the catalytic site for this cleavage, whereas DGCR8 or Pasha provides a frame for anchoring substrate pri-miRNAs. To clarify the molecular basis underlying recognition of pri-miRNA by DGCR8 and Pasha, we determined the crystal structure of the human DGCR8 core (DGCR8S, residues 493-720). In the structure, the two double-stranded RNA-binding domains (dsRBDs) are arranged with pseudo two-fold symmetry and are tightly packed against the C-terminal helix. The H2 helix in each dsRBD is important for recognition of pri-miRNA substrates. This structure, together with fluorescent resonance energy transfer and mutational analyses, suggests that the DGCR8 core recognizes pri-miRNA in two possible orientations. We propose a model for DGCR8's recognition of pri-miRNA.

Related Organizations
Keywords

Models, Molecular, ENZYME COMPLEX, Protein Conformation, PROTEIN, Proteins, RNA-Binding Proteins, Electrophoretic Mobility Shift Assay, MICROPROCESSOR COMPLEX, Crystallography, X-Ray, NUCLEAR EXPORT, PRIMARY MICRORNAS, MicroRNAs, MOLECULAR-BASIS, C-ELEGANS, Fluorescence Resonance Energy Transfer, DIGEORGE-SYNDROME, Humans, RNA-BINDING DOMAIN, DROSHA-DGCR8 COMPLEX, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 10%
Top 10%