Combined Inactivation of pRB and Hippo Pathways Induces Dedifferentiation in the Drosophila Retina
Combined Inactivation of pRB and Hippo Pathways Induces Dedifferentiation in the Drosophila Retina
Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.
- McGill University Canada
- University of Illinois at Chicago United States
Cell Cycle, Intracellular Signaling Peptides and Proteins, Apoptosis, Cell Differentiation, QH426-470, Protein Serine-Threonine Kinases, Retinoblastoma Protein, Retina, Genetics, Animals, Drosophila Proteins, Drosophila, Research Article, Cell Proliferation, Signal Transduction, Transcription Factors
Cell Cycle, Intracellular Signaling Peptides and Proteins, Apoptosis, Cell Differentiation, QH426-470, Protein Serine-Threonine Kinases, Retinoblastoma Protein, Retina, Genetics, Animals, Drosophila Proteins, Drosophila, Research Article, Cell Proliferation, Signal Transduction, Transcription Factors
15 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
