Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Regulatory Integrative and Comparative Physiology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

α-Tropomyosin mutations Asp175Asn and Glu180Gly affect cardiac function in transgenic rats in different ways

Authors: Wernicke, D; Thiel, C; Duja-Isac, C; Essin, K; Spindler, M; Nunez, D; Plehm, R; +10 Authors

α-Tropomyosin mutations Asp175Asn and Glu180Gly affect cardiac function in transgenic rats in different ways

Abstract

To study the mechanisms by which missense mutations in α-tropomyosin cause familial hypertrophic cardiomyopathy, we generated transgenic rats overexpressing α-tropomyosin with one of two disease-causing mutations, Asp175Asn or Glu180Gly, and analyzed phenotypic changes at molecular, morphological, and physiological levels. The transgenic proteins were stably integrated into the sarcomere, as shown by immunohistochemistry using a human-specific anti-α-tropomyosin antibody, ARG1. In transgenic rats with either α-tropomyosin mutation, molecular markers of cardiac hypertrophy were induced. Ca2+sensitivity of cardiac skinned-fiber preparations from animals with mutation Asp175Asn, but not Glu180Gly, was decreased. Furthermore, elevated frequency and amplitude of spontaneous Ca2+waves were detected only in cardiomyocytes from animals with mutation Asp175Asn, suggesting an increase in intracellular Ca2+concentration compensating for the reduced Ca2+sensitivity of isometric force generation. Accordingly, in Langendorff-perfused heart preparations, myocardial contraction and relaxation were accelerated in animals with mutation Asp175Asn. The results allow us to propose a hypothesis of the pathogenetic changes caused by α-tropomyosin mutation Asp175Asn in familial hypertrophic cardiomyopathy on the basis of changes in Ca2+handling as a sensitive mechanism to compensate for alterations in sarcomeric structure.

Keywords

Aspartic Acid, Heart Ventricles, Muscle Fibers, Skeletal, Glycine, Mutation, Missense, Gene Expression, Glutamic Acid, Heart, In Vitro Techniques, Immunohistochemistry, Myocardial Contraction, Rats, Animals, Genetically Modified, Cardiomyopathy, Hypertrophic, Familial, Animals, Humans, Calcium, Myocytes, Cardiac, Asparagine, Biomarkers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Green