<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probing the selective separation of potassium ion from sodium ion with cyclopentadienyl anion as receptor: a computational study

pmid: 26232185
Probing the selective separation of potassium ion from sodium ion with cyclopentadienyl anion as receptor: a computational study
A systematic computational study has been carried out using post-Hartree-Fock and density functional theory methods on half sandwich (M-Cp), sandwich (Cp-M-Cp), inversed sandwich (M-Cp-M), and multi-decker chain complexes of alkali metal ions (Na(+), and K(+)). The binding affinity of cyclopentadienyl anion (Cp) with K(+) and Na(+) ions has been studied in half sandwich, sandwich, inversed sandwich, and multi-decker chain complexes. These complexes have been examined in the aqueous phase. The calculated results show that Cp anion can preferentially bind with Na(+) ion over K(+) ion in aqueous phase. The results obtained from DFT calculations have been compared with the crystal structures of Cp-Na and Cp-K complexes. The Bader's atoms in molecule (AIM) analysis were performed to characterize the non-covalent cation-π interactions in the Cp-M complexes. The calculated electron density at cage critical point indicates the strength of the Cp-M complexes. Energy decomposition analysis (EDA) has also been performed to investigate the origins of these interactions. The electrostatic interaction contributes significantly to the total interaction energy in Cp-M complexes. The relative stability difference of cyclopentadienyl anion (Cp) with K(+) and Na(+) ions in aqueous phase can be exploited for the separations from mixture such as sea bittern. The lower stability of K-Cp complex can induce to precipitate the K(+) ions more easily than the corresponding Na(+) ions. Graphical Abstract Potassium ion from sodium ion with cyclopentadienyl anion as receptor.
Anions, Models, Molecular, Sodium, Potassium, Water, Computer Simulation, Cyclopentanes
Anions, Models, Molecular, Sodium, Potassium, Water, Computer Simulation, Cyclopentanes
6 Research products, page 1 of 1
- 2012IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2003IsAmongTopNSimilarDocuments
- 1998IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average