Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angiogenesis
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Angiogenesis
Article . 2008
versions View all 3 versions

Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies

Authors: Sainson, R; Harris, A;

Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies

Abstract

The notch-signalling pathway regulates cell fate and differentiation through cell-cell communication. In recent years, several in vitro and in vivo studies have demonstrated that notch-signalling functions as a negative feedback mechanism downstream of the VEGF-signalling pathway that acts to finely shape the vascular network. Notch activation by the Jagged-1 and Delta-like 4 ligands regulates different steps of blood vessel development ranging from proliferation and survival of endothelial cells, to vessel branching and arterial-venous differentiation. In addition, heterotypic notch signalling from endothelial cells to pericytes is critical for vessel stabilization and maturation. Interestingly, several studies have demonstrated that blocking the notch pathway can delay tumour growth. Unexpectedly however, tumour growth inhibition by Notch was caused by an increased number of non-functional vessels, which resulted in poor tumour perfusion. This approach of modulating notch signalling, combined with the extended knowledge acquired on the basic vascular role of notch signalling, will aid the development of treatments targetting human pathologies such as tissue ischaemia and solid tumour formation.

Keywords

Neovascularization, Pathologic, Receptors, Notch, Animals, Humans, Neovascularization, Physiologic, Endothelium, Vascular, Pericytes, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 1%
Green